The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis.

نویسندگان

  • J Poupart
  • C S Waddell
چکیده

The presence of indole-3-butyric acid (IBA) as an endogenous auxin in Arabidopsis has been recently demonstrated. However, the in vivo role of IBA remains to be elucidated. We present the characterization of a semi-dominant mutant that is affected in its response to IBA, but shows a wild-type response to indole-3-acetic acid (IAA), the predominant and most studied form of auxin. We have named this mutant rib1 for resistant to IBA. Root elongation assays show that rib1 is specifically resistant to IBA, to the synthetic auxin 2,4-dichlorophenoxyacetic acid, and to auxin transport inhibitors. rib1 does not display increased resistance to IAA, to the synthetic auxin naphthalene acetic acid, or to other classes of plant hormones. rib1 individuals also have other root specific phenotypes including a shortened primary root, an increased number of lateral roots, and a more variable response than wild type to a change in gravitational vector. Adult rib1 plants are morphologically indistinguishable from wild-type plants. These phenotypes suggest that rib1 alters IBA activity in the root, thereby affecting root development and response to environmental stimuli. We propose models in which RIB1 has a function in either IBA transport or response. Our experiments also suggest that IBA does not use the same mechanism to exit cells as does IAA and we propose a model for IBA transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.

Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, dev...

متن کامل

Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings.

Genetic evidence in Arabidopsis (Arabidopsis thaliana) suggests that the auxin precursor indole-3-butyric acid (IBA) is converted into active indole-3-acetic acid (IAA) by peroxisomal beta-oxidation; however, direct evidence that Arabidopsis converts IBA to IAA is lacking, and the role of IBA-derived IAA is not well understood. In this work, we directly demonstrated that Arabidopsis seedlings c...

متن کامل

Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes.

Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated r...

متن کامل

An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function.

Genetic evidence suggests that plant peroxisomes are the site of fatty acid beta-oxidation and conversion of the endogenous auxin indole-3-butyric acid (IBA) to the active hormone indole-3-acetic acid. Arabidopsis mutants that are IBA resistant and sucrose dependent during early development are likely to have defects in beta-oxidation of both IBA and fatty acids. Several of these mutants have l...

متن کامل

A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides.

Arabidopsis (Arabidopsis thaliana) contains 15 genes encoding members of the pleiotropic drug resistance (PDR) family of ATP-binding cassette transporters. These proteins have been speculated to be involved in the detoxification of xenobiotics, however, little experimental support of this hypothesis has been obtained to date. Here we report our characterization of the Arabidopsis PDR9 gene. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 124 4  شماره 

صفحات  -

تاریخ انتشار 2000